Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759820

RESUMO

The glutathione transferase A3-3 (GST A3-3) homodimeric enzyme is the most efficient enzyme that catalyzes isomerization of the precursors of testosterone, estradiol, and progesterone in the gonads of humans and horses. However, the presence of GST A3-3 orthologs with equally high ketosteroid isomerase activity has not been verified in other mammalian species, even though pig and cattle homologs have been cloned and studied. Identifying GSTA3 genes is a challenge because of multiple GSTA gene duplications (e.g., 12 in the human genome); consequently, the GSTA3 gene is not annotated in most genomes. To improve our understanding of GSTA3 gene products and their functions across diverse mammalian species, we cloned homologs of the horse and human GSTA3 mRNAs from the testes of a dog, goat, and gray short-tailed opossum, the genomes of which all currently lack GSTA3 gene annotations. The resultant novel GSTA3 mRNA and inferred protein sequences had a high level of conservation with human GSTA3 mRNA and protein sequences (≥70% and ≥64% identities, respectively). Sequence conservation was also apparent for the 12 residues of the "H-site" in the 222 amino acid GSTA3 protein that is known to interact with the steroid substrates. Modeling predicted that the dog GSTA3-3 may be a more active ketosteroid isomerase than the corresponding goat or opossum enzymes. However, expression of the GSTA3 gene was higher in liver than in other dog tissue. Our results improve understanding of the active sites of mammalian GST A3-3 enzymes, inhibitors of which might be useful for reducing steroidogenesis for medical purposes, such as fertility control or treatment of steroid-dependent diseases.


Assuntos
Glutationa Transferase , Cabras , Humanos , Cavalos/genética , Cães , Animais , Bovinos , Suínos , RNA Mensageiro/genética , Glutationa Transferase/metabolismo , Cabras/genética , Cabras/metabolismo , Gambás/genética , Gambás/metabolismo , Esteroides/química , Isomerases/genética , Isomerases/metabolismo , Cetosteroides
2.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36721950

RESUMO

Genomic imprinting is a parent-of-origin-specific expression phenomenon that plays fundamental roles in many biological processes. In animals, imprinting is only observed in therian mammals, with ∼200 imprinted genes known in humans and mice. The imprinting pattern in marsupials has been minimally investigated by examining orthologs to known eutherian imprinted genes. To identify marsupial-specific imprinting in an unbiased way, we performed RNA-seq studies on samples of fetal brain and placenta from the reciprocal cross progeny of two laboratory opossum stocks. We inferred allele-specific expression for >3,000 expressed genes and discovered/validated 13 imprinted genes, including three previously known imprinted genes, Igf2r, Peg10, and H19. We estimate that marsupials imprint ∼60 autosomal genes, which is a much smaller set compared with eutherians. Among the nine novel imprinted genes, three noncoding RNAs have no known homologs in eutherian mammals, while the remaining genes have important functions in pluripotency, transcription regulation, nucleolar homeostasis, and neural differentiation. Methylation analyses at promoter CpG islands revealed differentially methylated regions in five of these marsupial-specific imprinted genes, suggesting that differential methylation is a common mechanism in the epigenetic regulation of marsupial imprinting. Clustering and co-regulation were observed at marsupial imprinting loci Pou5f3-Npdc1 and Nkrfl-Ipncr2, but eutherian-type multi-gene imprinting clusters were not detected. Also differing from eutherian mammals, the brain and placenta imprinting profiles are remarkably similar in opossums, presumably due to the shared origin of these organs from the trophectoderm. Our results contribute to a fuller understanding of the origin, evolution, and mechanisms of genomic imprinting in therian mammals.


Assuntos
Marsupiais , Gravidez , Humanos , Feminino , Animais , Camundongos , Marsupiais/genética , Metilação de DNA , Epigênese Genética , Duplicação Gênica , Impressão Genômica , Gambás/genética , Mamíferos , Eutérios/genética
3.
Nat Commun ; 13(1): 2602, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545632

RESUMO

XX female and XY male therian mammals equalize X-linked gene expression through the mitotically-stable transcriptional inactivation of one of the two X chromosomes in female somatic cells. Here, we describe an essential function of the X-linked homolog of an ancestral X-Y gene pair, Kdm5c-Kdm5d, in the expression of Xist lncRNA, which is required for stable X-inactivation. Ablation of Kdm5c function in females results in a significant reduction in Xist RNA expression. Kdm5c encodes a demethylase that enhances Xist expression by converting histone H3K4me2/3 modifications into H3K4me1. Ectopic expression of mouse and human KDM5C, but not the Y-linked homolog KDM5D, induces Xist in male mouse embryonic stem cells (mESCs). Similarly, marsupial (opossum) Kdm5c but not Kdm5d also upregulates Xist in male mESCs, despite marsupials lacking Xist, suggesting that the KDM5C function that activates Xist in eutherians is strongly conserved and predates the divergence of eutherian and metatherian mammals. In support, prototherian (platypus) Kdm5c also induces Xist in male mESCs. Together, our data suggest that eutherian mammals co-opted the ancestral demethylase KDM5C during sex chromosome evolution to upregulate Xist for the female-specific induction of X-inactivation.


Assuntos
Marsupiais , Ornitorrinco , RNA Longo não Codificante , Animais , Feminino , Genes Ligados ao Cromossomo X , Histona Desmetilases , Masculino , Mamíferos/genética , Marsupiais/genética , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética
4.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34751383

RESUMO

The gray short-tailed opossum (Monodelphis domestica) is an established laboratory-bred marsupial model for biomedical research. It is a critical species for comparative genomics research, providing the pivotal phylogenetic outgroup for studies of derived vs ancestral states of genomic/epigenomic characteristics for eutherian mammal lineages. To characterize the current genetic profile of this laboratory marsupial, we examined 79 individuals from eight established laboratory strains. Double digest restriction site-associated DNA sequencing and whole-genome resequencing experiments were performed to investigate the genetic architecture in these strains. A total of 66,640 high-quality single nucleotide polymorphisms (SNPs) were identified. We analyzed SNP density, average heterozygosity, nucleotide diversity, and population differentiation parameter Fst within and between the eight strains. Principal component and population structure analysis clearly resolve the strains at the level of their ancestral founder populations, and the genetic architecture of these strains correctly reflects their breeding history. We confirmed the successful establishment of the first inbred laboratory opossum strain LSD (inbreeding coefficient F > 0.99) and a nearly inbred strain FD2M1 (0.98 < F < 0.99), each derived from a different ancestral background. These strains are suitable for various experimental protocols requiring controlled genetic backgrounds and for intercrosses and backcrosses that can generate offspring with informative SNPs for studying a variety of genetic and epigenetic processes. Together with recent advances in reproductive manipulation and CRISPR/Cas9 techniques for Monodelphis domestica, the existence of distinctive inbred strains will enable genome editing on different genetic backgrounds, greatly expanding the utility of this marsupial model for biomedical research.


Assuntos
Monodelphis , Animais , Genoma , Genômica , Humanos , Laboratórios , Monodelphis/genética , Filogenia
5.
Int J Syst Evol Microbiol ; 70(12): 6032-6043, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33079029

RESUMO

In a search for potential causes of increased prolapse incidence in grey short-tailed opossum colonies, samples from the gastrointestinal tracts of 94 clinically normal opossums with rectal prolapses were screened for Helicobacter species by culture and PCR. Forty strains of two novel Helicobacter species which differed from the established Helicobacter taxa were isolated from opossums with and without prolapses. One of the Helicobacter species was spiral-shaped and urease-negative whereas the other Helicobacter strain had fusiform morphology with periplasmic fibres and was urease-positive. 16S rRNA gene sequence analysis revealed that all the isolates had over 99 % sequence identity with each other, and were most closely related to Helicobacter canadensis. Strains from the two novel Helicobacter species were subjected to gyrB and hsp60 gene and whole genome sequence analyses. These two novel Helicobacter species formed separate phylogenetic clades, divergent from other known Helicobacter species. The bacteria were confirmed as novel Helicobacter species based on digital DNA-DNA hybridization and average nucleotide identity analysis of their genomes, for which we propose the names Helicobacter monodelphidis sp. nov. with the type strain MIT 15-1451T (=LMG 29780T=NCTC 14189T) and Helicobacter didelphidarum sp. nov with type strain MIT 17-337T (=LMG 31024T=NCTC 14188T).


Assuntos
Cloaca/patologia , Helicobacter/classificação , Monodelphis/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Cloaca/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Trato Gastrointestinal/microbiologia , Genes Bacterianos , Helicobacter/isolamento & purificação , Hibridização de Ácido Nucleico , Prolapso , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Texas
6.
RNA ; 25(8): 1004-1019, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31097619

RESUMO

The marsupial inactive X chromosome expresses a long noncoding RNA (lncRNA) called Rsx that has been proposed to be the functional analog of eutherian Xist Despite the possibility that Xist and Rsx encode related functions, the two lncRNAs harbor no linear sequence similarity. However, both lncRNAs harbor domains of tandemly repeated sequence. In Xist, these repeat domains are known to be critical for function. Using k-mer based comparison, we show that the repeat domains of Xist and Rsx unexpectedly partition into two major clusters that each harbor substantial levels of nonlinear sequence similarity. Xist Repeats B, C, and D were most similar to each other and to Rsx Repeat 1, whereas Xist Repeats A and E were most similar to each other and to Rsx Repeats 2, 3, and 4. Similarities at the level of k-mers corresponded to domain-specific enrichment of protein-binding motifs. Within individual domains, protein-binding motifs were often enriched to extreme levels. Our data support the hypothesis that Xist and Rsx encode similar functions through different spatial arrangements of functionally analogous protein-binding domains. We propose that the two clusters of repeat domains in Xist and Rsx function in part to cooperatively recruit PRC1 and PRC2 to chromatin. The physical manner in which these domains engage with protein cofactors may be just as critical to the function of the domains as the protein cofactors themselves. The general approaches we outline in this report should prove useful in the study of any set of RNAs.


Assuntos
Marsupiais/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Animais , Análise por Conglomerados , Humanos , Marsupiais/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Domínios Proteicos , Homologia de Sequência do Ácido Nucleico , Sequências de Repetição em Tandem , Inativação do Cromossomo X
7.
Epigenetics Chromatin ; 10: 27, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515788

RESUMO

BACKGROUND: The ubiquitin protein E3A ligase gene (UBE3A) gene is imprinted with maternal-specific expression in neurons and biallelically expressed in all other cell types. Both loss-of-function and gain-of-function mutations affecting the dosage of UBE3A are associated with several neurodevelopmental syndromes and psychological conditions, suggesting that UBE3A is dosage-sensitive in the brain. The observation that loss of imprinting increases the dosage of UBE3A in brain further suggests that inactivation of the paternal UBE3A allele evolved as a dosage-regulating mechanism. To test this hypothesis, we examined UBE3A transcript and protein levels among cells, tissues, and species with different imprinting states of UBE3A. RESULTS: Overall, we found no correlation between the imprinting status and dosage of UBE3A. Importantly, we found that maternal Ube3a protein levels increase in step with decreasing paternal Ube3a protein levels during neurogenesis in mouse, fully compensating for loss of expression of the paternal Ube3a allele in neurons. CONCLUSIONS: Based on our findings, we propose that imprinting of UBE3A does not function to reduce the dosage of UBE3A in neurons but rather to regulate some other, as yet unknown, aspect of gene expression or protein function.


Assuntos
Dosagem de Genes/genética , Impressão Genômica , Herança Materna/genética , Ubiquitina-Proteína Ligases/genética , Alelos , Animais , Feminino , Regulação da Expressão Gênica , Camundongos , Neurogênese/genética , Neurônios/metabolismo , RNA Antissenso/genética , Ubiquitina-Proteína Ligases/biossíntese
8.
G3 (Bethesda) ; 7(3): 843-850, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28122951

RESUMO

Developments in next-generation sequencing allow genotyping of thousands of genetic markers across hundreds of individuals in a cost-effective manner. Because of this, it is now possible to rapidly produce dense genetic linkage maps for nonmodel species. Here, we report a dense genetic linkage map for red drum, a marine fish species of considerable economic importance in the southeastern United States and elsewhere. We used a prior microsatellite-based linkage map as a framework and incorporated 1794 haplotyped contigs derived from high-throughput, reduced representation DNA sequencing to produce a linkage map containing 1794 haplotyped restriction-site associated DNA (RAD) contigs, 437 anonymous microsatellites, and 44 expressed sequence-tag-linked microsatellites (EST-SSRs). A total of 274 candidate genes, identified from transcripts from a preliminary hydrocarbon exposure study, were localized to specific chromosomes, using a shared synteny approach. The linkage map will be a useful resource for red drum commercial and restoration aquaculture, and for better understanding and managing populations of red drum in the wild.


Assuntos
Mapeamento Cromossômico , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Perciformes/genética , Sintenia/genética , Animais
9.
Mol Ecol ; 26(8): 2237-2256, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28133827

RESUMO

The Leon Springs pupfish (Cyprinodon bovinus) is an endangered species currently restricted to a single desert spring and a separate captive habitat in southwestern North America. Following establishment of the captive population from wild stock in 1976, the wild population has undergone natural population size fluctuations, intentional culling to purge genetic contamination from an invasive congener (Cyprinodon variegatus) and augmentation/replacement of wild fish from the captive stock. A severe population decline following the most recent introduction of captive fish prompted us to examine whether the captive and wild populations have differentiated during the short time they have been isolated from one another. If so, the development of divergent genetic and/or morphologic traits between populations could contribute to a diminished ability of fish from one location to thrive in the other. Examination of genomewide single nucleotide polymorphisms and morphologic variation revealed no evidence of residual C. variegatus characteristics in contemporary C. bovinus samples. However, significant genetic and morphologic differentiation was detected between the wild and captive populations, some of which might reflect local adaptation. Our results indicate that genetic and physical characteristics can diverge rapidly between isolated subdivisions of managed populations, potentially compromising the value of captive stock for future supplementation efforts. In the case of C. bovinus, our findings underscore the need to periodically inoculate the captive population with wild genetic material to help mitigate genetic, and potentially morphologic, divergence between them and also highlight the utility of parallel morphologic and genomic evaluation to inform conservation management planning.


Assuntos
Espécies em Perigo de Extinção , Genética Populacional , Peixes Listrados/genética , Polimorfismo de Nucleotídeo Único , Animais , Conservação dos Recursos Naturais , Biblioteca Gênica , Peixes Listrados/anatomia & histologia , New Mexico , Dinâmica Populacional , Análise de Sequência de DNA , Texas
10.
PLoS Genet ; 11(8): e1005442, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26241857

RESUMO

Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo.


Assuntos
Metilação de DNA , Placenta/fisiologia , Animais , Bovinos , Células Cultivadas , Cães , Epigênese Genética , Evolução Molecular , Feminino , Cavalos , Macaca mulatta , Camundongos , Oócitos/fisiologia , Fases de Leitura Aberta , Gambás , Gravidez , Saimiri , Especificidade da Espécie , Transcrição Gênica
11.
BMC Endocr Disord ; 14: 46, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24913450

RESUMO

BACKGROUND: Mexican Americans are at an increased risk of both thyroid dysfunction and metabolic syndrome (MS). Thus it is conceivable that some components of the MS may be associated with the risk of thyroid dysfunction in these individuals. Our objective was to investigate and replicate the potential association of MS traits with thyroid dysfunction in Mexican Americans. METHODS: We conducted association testing for 18 MS traits in two large studies on Mexican Americans - the San Antonio Family Heart Study (SAFHS) and the National Health and Nutrition Examination Survey (NHANES) 2007-10. A total of 907 participants from 42 families in SAFHS and 1633 unrelated participants from NHANES 2007-10 were included in this study. The outcome measures were prevalence of clinical and subclinical hypothyroidism and thyroid function index (TFI) - a measure of thyroid function. For the SAFHS, we used polygenic regression analyses with multiple covariates to test associations in setting of family studies. For the NHANES 2007-10, we corrected for the survey design variables as needed for association analyses in survey data. In both datasets, we corrected for age, sex and their linear and quadratic interactions. RESULTS: TFI was an accurate indicator of clinical thyroid status (area under the receiver-operating-characteristic curve to detect clinical hypothyroidism, 0.98) in both SAFHS and NHANES 2007-10. Of the 18 MS traits, waist circumference (WC) showed the most consistent association with TFI in both studies independently of age, sex and body mass index (BMI). In the SAFHS and NHANES 2007-10 datasets, each standard deviation increase in WC was associated with 0.13 (p < 0.001) and 0.11 (p < 0.001) unit increase in the TFI, respectively. In a series of polygenic and linear regression models, central obesity (defined as WC ≥ 102 cm in men and ≥88 cm in women) was associated with clinical and subclinical hypothyroidism independent of age, sex, BMI and type 2 diabetes in both datasets. Estimated prevalence of hypothyroidism was consistently high in those with central obesity, especially below 45y of age. CONCLUSIONS: WC independently associates with increased risk of thyroid dysfunction. Use of WC to identify Mexican American subjects at high risk of thyroid dysfunction should be investigated in future studies.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Hipotireoidismo/epidemiologia , Síndrome Metabólica/fisiopatologia , Americanos Mexicanos , Obesidade/complicações , Circunferência da Cintura , Adulto , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Seguimentos , Humanos , Hipotireoidismo/etiologia , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Obesidade/fisiopatologia , Prevalência , Prognóstico , Curva ROC , Fatores de Risco , Estados Unidos/epidemiologia
12.
BMC Genomics ; 15: 89, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24484454

RESUMO

BACKGROUND: Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. RESULTS: We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. CONCLUSIONS: In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines.


Assuntos
Fibroblastos/metabolismo , Genoma , Impressão Genômica , Histonas/genética , Monodelphis/genética , Animais , Imunoprecipitação da Cromatina , Ilhas de CpG , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Masculino , Proteína Meis1 , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
13.
Genome Res ; 24(1): 70-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24065774

RESUMO

Evidence from a few genes in diverse species suggests that X-chromosome inactivation (XCI) in marsupials is characterized by exclusive, but leaky inactivation of the paternally derived X chromosome. To study the phenomenon of marsupial XCI more comprehensively, we profiled parent-of-origin allele-specific expression, DNA methylation, and histone modifications in fetal brain and extra-embryonic membranes in the gray, short-tailed opossum (Monodelphis domestica). The majority of X-linked genes (152 of 176 genes with trackable SNP variants) exhibited paternally imprinted expression, with nearly 100% of transcripts derived from the maternal allele; whereas 24 loci (14%) escaped inactivation, showing varying levels of biallelic expression. In addition to recently reported evidence of marsupial XCI regulation by the noncoding Rsx transcript, strong depletion of H3K27me3 at escaper gene loci in the present study suggests that histone state modifications also correlate strongly with opossum XCI. In contrast to mouse, the opossum did not show an association between X-linked gene expression and promoter DNA methylation, with one notable exception. Unlike all other X-linked genes examined, Rsx was differentially methylated on the maternal and paternal X chromosomes, and expression was exclusively from the inactive (paternal) X chromosome. Our study provides the first comprehensive catalog of parent-of-origin expression status for X-linked genes in a marsupial and sheds light on the regulation and evolution of imprinted XCI in mammals.


Assuntos
Encéfalo/embriologia , Genes Ligados ao Cromossomo X , Monodelphis/embriologia , Monodelphis/genética , Placenta/metabolismo , RNA não Traduzido/genética , Inativação do Cromossomo X , Cromossomo X/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Metilação de DNA , Embrião de Mamíferos , Epigênese Genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Histonas , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Gravidez , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Cromossomo X/genética
14.
J Hered ; 102(5): 577-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21685406

RESUMO

MicroRNAs (miRNAs) are an important class of posttranscriptional gene expression regulators. In the course of mapping novel marsupial-specific miRNAs in the genome of the gray short-tailed opossum, Monodelphis domestica, we encountered a cluster of 39 actual and potential miRNAs spanning 102 kb of the X chromosome. Analysis of the cluster revealed that 37 of the 39 miRNAs are predicted to form thermodynamically stable hairpins, and at least 3 members have been directly cloned from M. domestica tissues. The sequence characteristics of these miRNAs suggest that they all descended from a single common ancestor. Further, 2 distinct families appear to have diversified from the ancestral sequence through different duplication mechanisms: one through a series of simple tandem duplications and the other through a recurrent transposon-mediated duplication process.


Assuntos
Cromossomos de Mamíferos/genética , MicroRNAs/genética , Monodelphis/genética , Família Multigênica , Cromossomo X/genética , Animais , Sequência de Bases , Cromossomos , Regulação da Expressão Gênica , Ordem dos Genes , Masculino , Dados de Sequência Molecular , Monodelphis/classificação , Filogenia , Reprodução/genética , Alinhamento de Sequência
15.
Mol Ecol Resour ; 11(4): 757-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21627775

RESUMO

This article documents the addition of 111 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acipenser oxyrinchus desotoi, Anopheles nuneztovari sensu lato, Asellus aquaticus, Calopteryx splendens, Calopteryx virgo, Centaurea aspera, Centaurea seridis, Chilina dombeyana, Proctoeces cf. lintoni and Pyrenophora teres f. teres.


Assuntos
Bases de Dados Genéticas , Repetições de Microssatélites , Acanthaceae/genética , Animais , Artrópodes/genética , Ascomicetos/genética , Cordados/genética , Dados de Sequência Molecular , Plantas/genética , Análise de Sequência de DNA , Trematódeos/genética
16.
J Lipid Res ; 51(10): 2929-39, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20650928

RESUMO

Plasma cholesterol levels among individuals vary considerably in response to diet. However, the genes that influence this response are largely unknown. Non-HDL (V+LDL) cholesterol levels vary dramatically among gray, short-tailed opossums fed an atherogenic diet, and we previously reported that two quantitative trait loci (QTLs) influenced V+LDL cholesterol on two diets. We used hypothesis-free, genome-wide linkage analyses on data from 325 pedigreed opossums and located one QTL for V+LDL cholesterol on the basal diet on opossum chromosome 1q [logarithm of the odds (LOD) = 3.11, genomic P = 0.019] and another QTL for V+LDL on the atherogenic diet (i.e., high levels of cholesterol and fat) on chromosome 8 (LOD = 9.88, genomic P = 5 x 10(-9)). We then employed a novel strategy involving combined analyses of genomic resources, expression analysis, sequencing, and genotyping to identify candidate genes for the chromosome 8 QTL. A polymorphism in ABCB4 was strongly associated (P = 9 x 10(-14)) with the plasma V+LDL cholesterol concentrations on the high-cholesterol, high-fat diet. The results of this study indicate that genetic variation in ABCB4, or closely linked genes, is responsible for the dramatic differences among opossums in their V+LDL cholesterol response to an atherogenic diet.


Assuntos
VLDL-Colesterol/sangue , Locos de Características Quantitativas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , VLDL-Colesterol/genética , Gorduras na Dieta/farmacologia , Variação Genética , Genótipo , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Monodelphis/genética , Monodelphis/metabolismo
17.
Immunogenetics ; 62(6): 369-82, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20383634

RESUMO

Activated mast cells release a number of potent inflammatory mediators including histamine, proteoglycans, cytokines, and serine proteases. The proteases constitute the majority of the mast cell granule proteins, and they belong to either the chymase or the tryptase family. In mammals, these enzymes are encoded by two different loci, the mast cell chymase and the multigene tryptase loci. In mice and humans, a relatively large number of tryptic enzymes are encoded from the latter locus. These enzymes can be grouped into two subfamilies, the group 1 tryptases, with primarily membrane-anchored enzymes, and the group 2 tryptases, consisting of the soluble mast cell tryptases. In order to study the appearance of these enzymes during vertebrate evolution, we have analyzed the dog, cattle, opossum, and platypus genomes and sought orthologues in the genomes of several bird, frog, and fish species as well. Our results show that the overall structure and the number of genes within this locus have been well conserved from marsupial to placental mammals. In addition, two relatively distantly related group 2 tryptase genes and several direct homologues of some of the group 1 genes are present in the genome of the platypus, a monotreme. However, no direct homologues of the individual genes of either group 1 or 2 enzymes were identified in bird, amphibian, or fish genomes. Our results indicate that the individual genes within the multigene tryptase locus, in their present form, are essentially mammal-specific.


Assuntos
Mapeamento Cromossômico , Evolução Molecular , Família Multigênica , Triptases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Clonagem Molecular , Cães , Humanos , Camundongos , Dados de Sequência Molecular , Gambás/genética , Triptases/análise
18.
Gene ; 448(2): 187-91, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19577616

RESUMO

Using a direct miRNA cloning strategy we previously identified fourteen marsupial- or species-specific microRNAs in the marsupial species Monodelphis domestica. In the present study we examined each of the pre-miRNAs and their flanking sequences and demonstrate that half of these miRNAs evolved from marsupial-specific transposable elements. These findings reinforce the view that transposable elements are a previously unappreciated source of new, lineage-specific microRNAs.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Evolução Molecular , Marsupiais/genética , MicroRNAs/genética , Animais , Sequência de Bases , Elementos de DNA Transponíveis/genética , Variação Genética/fisiologia , Masculino , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
19.
Genome Res ; 18(8): 1199-215, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18676819

RESUMO

The strategic importance of the genome sequence of the gray, short-tailed opossum, Monodelphis domestica, accrues from both the unique phylogenetic position of metatherian (marsupial) mammals and the fundamental biologic characteristics of metatherians that distinguish them from other mammalian species. Metatherian and eutherian (placental) mammals are more closely related to one another than to other vertebrate groups, and owing to this close relationship they share fundamentally similar genetic structures and molecular processes. However, during their long evolutionary separation these alternative mammals have developed distinctive anatomical, physiologic, and genetic features that hold tremendous potential for examining relationships between the molecular structures of mammalian genomes and the functional attributes of their components. Comparative analyses using the opossum genome have already provided a wealth of new evidence regarding the importance of noncoding elements in the evolution of mammalian genomes, the role of transposable elements in driving genomic innovation, and the relationships between recombination rate, nucleotide composition, and the genomic distributions of repetitive elements. The genome sequence is also beginning to enlarge our understanding of the evolution and function of the vertebrate immune system, and it provides an alternative model for investigating mechanisms of genomic imprinting. Equally important, availability of the genome sequence is fostering the development of new research tools for physical and functional genomic analyses of M. domestica that are expanding its versatility as an experimental system for a broad range of research applications in basic biology and biomedically oriented research.


Assuntos
Genômica , Gambás/genética , Animais , Evolução Molecular , Impressão Genômica , Imunidade/genética , Sistema Nervoso/crescimento & desenvolvimento , Gambás/classificação , Gambás/crescimento & desenvolvimento , Proteínas/genética , Recombinação Genética , Retroelementos , Inativação do Cromossomo X
20.
Mamm Genome ; 19(7-8): 581-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18473137

RESUMO

PIWI-interacting RNAs (piRNAs) are a recently discovered class of small noncoding RNAs that have been detected in human, mouse, rat, zebrafish, and Drosophila genomes. We have utilized a size-directed small-RNA cloning procedure to clone and map more than 300 candidate piRNA-like small RNAs in the genome of the marsupial species Monodelphis domestica. Our results are consistent with those from other species in that the piRNA-like candidate sequences range in size from 28 to 31 nucleotides, show a pronounced preference for uridine at the 5' end, are transcribed from a few large clusters, appear to target transposons, and display virtually no sequence conservation.


Assuntos
Elementos de DNA Transponíveis/genética , Monodelphis/genética , Família Multigênica , RNA Interferente Pequeno/genética , Transcrição Gênica , Animais , Sequência de Bases , Células Clonais , Masculino , Dados de Sequência Molecular , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...